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A vortex theory of animal flight. Part 1. 
The vortex wake of a hoyering animal 

By J. M. V. RAYNER 
Department of Applied Mathematics and Theoretical Physics, University of Cambridge? 

(Received 18 May 1978) 

The distribution of vorticity in the wake of a hovering bird or insect is considered. 
The wake is modelled by a chain of coaxial small-cored circular vortex rings stacked 
one upon another; each member of the chain is generated by a single wing-stroke. 
Circulation is determined by the animal’s weight and the time for which a single 
ring must provide lift; ring size is calculated from the circulation distribution on the 
animal’s wing. The theory is equally applicable to birds and insects, although the 
mechanism of ring formation differs. This approach avoids the use of lift and drag 
coefficients and is not bound by the constraints of steady-state aerodynamics; it 
gives a wake eonfiguration in agreement with experimental observations. The classical 
momentum jet approach has steady momentum flux in the wake, and is difficult to 
relate to the wing motions of a hovering bird or insect; the vortex wake can be related 
to the momentum jet, but adjacent vortex elements are disjoint and momentum flux 
is periodic. 

The evolution of the wake starting from rest is considered by releasing vortex rings 
a t  appropriate time intervals and allowing them to interact in their own velocity 
fields. The resulting configuration depends on the feathering parameter f (which 
depends on the animal’s morphology); f increases with body size. At the lower end 
of the wake rings coalesce to form a single large vortex, which breaks away from the 
rest of the wake a t  intervals. Wake contraction depends on f ;  the minimum areal 
contraction of one-half (as in momentum-jet theory) occurs only in the limit f --f 0, 
but values calculated for smaller insects of just over one-half suggest that the momen- 
tum jet may be a good approximation to the wake when f is small. 

Induced power in hovering is calculated as the limit of the mean rate of increase 
of wake kinetic energy as time progresses. It can be related to the classical momentum- 
jet induced power by a simple conversion factor. For an insect or hummingbird the 
usual momentum-jet estimate may be between 10 and 15% too low, but for a bird 
it may be as much as 50% too low. This suggests that few, if any, birds are able to 
sustain aerobic hovering, and that as small a value off as possible would be necessary 
if the bird were to hover. 

Tip losses (energy cost of the vortex-ring wake compared with the equivalent 
momentum jet) are negligible for insects, but can be in the range 15-20y0 for birds. 

t Present address: Department of Zoology, University of Bristol. 
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1. Introduction 
This paper describes a theory for the flight of a hovering animal based on the 

vorticity present in its wake. By the theory the flight characteristics, and in particular 
the rate of working, may be estimated. For reasons described below, the vortex model 
consists of a chain of horizontal vortex rings stacked one above another. The com- 
panion paper (Rayner 1979a, afterwards referred to as 11) describes the application 
of the theory to forward avian flight. 

A common approach to the problem of hovering flight (e.g. Hoff 1919; Hainsworth 
& Wolf 1972; Weis-Fogh 1972) is the actuator disk and its associated Rankine- 
Froude momentum jet, as used in propeller theory (Glauert 1935). This assumes that 
there is no vorticity present in the body of the wake, and that the wake has a well- 
defined boundary within which mass and momentum are conserved; effectively this 
boundary is a thin vortex sheet, although a cylindrical vortex sheet is unlikely to be 
stable. Other defects of the actuator-disk theory are the geometrical assumptions 
used in applying conservation laws, which become meaningless if the boundary dis- 
torts or breaks up, and the lack of consideration of the mechanism on the disk itself 
by which a pair of wings oscillating back and forth can generate a steady momentum 
jet. 

I n  an effort to overcome the second problem a blade element theory has been 
widely applied in the study of propellers. It. was tentatively applied to insect flight by 
Osborne (1951), and then with more success by Weis-Fogh (1972, 1973). This theory 
assumes that each element of the wing operates under steady-state aerofoil conditions, 
the lift SL generated by the section being given by an equation of the form 

SL = ~pSSC,u2, (1) 

where p is the air density, SS the element’s area, u its velocity through the air, and 
CL the lift coefficient; CL depends on the cross-section and angle of attack of the 
element, but is largely independent of u, except in so far as the cross-section and 
angle of attack themselves vary with velocity. 

Most existing flight studies (Pennycuick 1968; Weis-Fogh 1972, 1973; Norberg 
1975, 1976) use a blade element theory combined with the induced fluid velocities 
predicted by the momentum jet. These all require knowledge of the lift and drag 
coefficients and the assumption that steady state aerodynamics pertains. In  this 
vortex theory we need not make such a sweeping assumption, and do not need values 
for the lift and drag coefficients. 

The maximum lift obtainable from an aerofoil is limited by the separation of the 
upper surface boundary layer; for a simple rigid non-permeable wing the maximum 
lift coefficient obtainable is about 1, but the use of lift-enhancing devices such as 
leading-edge slots and through-wing suction can raise the maximum to about 3. 
The few indications available suggest that very large lift coefficients are required by 
hovering animals. Basing calculations on careful observations, Weis-Pogh (197 2) 
found that an average CL of 1.8 was required by the hummingbird Amazilia, near to 
the maximum. More puzzlingly, Norberg (1975) found that the pied flycatcher 
Ficedula hypoleuca required CL = 5.3 to hover, apparently in still air. Unless remark- 
able high lift devices are at an animal’s disposal, steady-state aerodynamics cannot 
give a complete description of hovering and slow speed flight in insects and smaller 
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birds. Some larger birds, for exampIe pigeons, can hover for a few strokes, which 
suggests that they have sufficient aerodynamic capacity and structural strength, but 
insufficient power, for prolonged aerobic hovering; it is reasonable to  expect that 
power consumption determines the maximum size above which animals cannot hover, 
either continuously or for short periods. It is not clear from Norberg's paper whether 
the flycatcher concerned was capable of sustained hovering. As it was hovering before 
landing on a nest it seems most likely that the muscles were becoming anaerobic, 
and that the animal would not have been capable of continuous hovering. There is 
no reliable evidence that any bird (except for the rather unusual hummingbird) is 
able to hover continuously. Observations of such birds as the kestrel hovering can 
be explained by slow flight into a wind, so that they merely appear stationary. 

Equation ( 1 )  may still apply to animal hovering, but its use should be cautious 
because of the lack of information on the behaviour of C, under unsteady high lift 
conditions. Any theory which avoids the use of lift and drag coefficients for the wing 
sections will be less dependent on the steady-state assumptions, and will be more 
appropriate to the study of animal flight. We consider the topic of lift coefficients in 
greater detail in 11, 5 5 .  

A wing starting from rest cannot build up its full circulation immediately, but is 
subject to a time delay (the Wagner effect); equally, as the wing slows there is a 
certain amount of hysteresis as the circulation is not shed into the wake as rapidly 
as the steady-state theory suggests. It seems likely that the combined effects of these 
two phenomena would be to reduce the average lift coefficient for an oscillating wing 
slightly; no such mechanism is known by which a lift coefficient as high as 5 might 
be obtained. Cone (1968) suggests that, if the wings could start sufficiently close to 
one another for the bound vortex of one to  be the trailing vortex of the other, the 
animal might ease the Wagner effect and achieve a more rapid build-up of circulation. 
From careful observation of the chalcid wasp Encarsia formosa, Weis-Fogh showed 
that for these tiny ( E 1 mm) insects lift enhancement from the clap-and-fling does 
indeed take place (Weis-Fogh 1973; Lighthill 1973). The clap-and-fling motions 
allow a sudden rush of air into the gap between the wings, so that circulation is set 
up almost instantaneously, thus allowing some increase of lift. Variations on the 
clap-and-fling have been observed in many orders of insects and birds, but despite 
the importance of the mechanism it  is unlikely to explain Norberg's high lift coefficient 
for the flycatcher; in the measurements concerned the wing tips remained a t  least 
70" apart throughout, although the secondary feathers may have touched. 

It is not possible to give a detailed discussion of the lift coefficient required in 
hovering flight or of the mechanisms by which they are obtained. This problem remains 
one of the main stumbling blocks in any theory of animal flight. Many insects have 
pairs of wings whose interaction is ill understood, and the wings of some species consist 
of little more than feather-like plumes. Bird wings are of course very complicated, 
with many refinements presumably intended to assist lift generation and drag re- 
duction; the emarginated and separated primary feathers and the alula (a form of 
leading-edge slot) can all assist (Nachtigall & Kempf 1971; Oehme & Kitzler 1975a), 
but we can do little more than speculate on how, and to what effect. For the purposes 
of this discussion it is sufficient to recall that  generally the animals concerned can hover, 
so that in most cases there must be some form of lift enhancement in operation. 

We shall deduce results from a study of the vorticity present in the animal's wake, 
24-2 
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rather than from the more usual approach of wing aerodynamics. The true distribu- 
tion of vorticity in the wake is highly complex, and for an effective investigation it 
needs careful simplification. Consideration of the wake of a flying aircraft has proved 
very instructive (von K&rm&n & Burgers 1935) and our calculations are analogous 
to these classical results. Hovering is defined as the mode of flight in which the body 
is a t  rest relative to undisturbed air, with the wake vertically beneath the animal, and 
with all fluid motions induced by the beating wings. The wing disk is the approximately 
circular area mapped out by the leading edges of the wings as they oscillate back and 
forth; it is assumed to be planar and tilted such that the resulting wake momentum 
is vertical (see below, and $3).  

The aircraft wake consists of a vortex sheet shed from the trailing edges of the 
wings, which in time rolls up into two parallel straight line vortices which drift down- 
wards under their mutual interaction. The separation and core radius of the resulting 
vortex pair are determined by the distribution of wing circulation, and may be found 
under certain simplifying assumptions. The optimum circulation distribution in 
terms of power saving is elliptic loading, with constant downwash; in this case the 
separation is 0.785 times the wing-span, and the core radius 0.171 times. 

I n  a flapping animal the situation is more complex. While the wings produce lift 
there must be some form of trailing vortex sheet, containing elements of transverse 
or cross-stream vorticity if the wing velocity and circulation vary during the stroke. 
I n  most birds the upstroke is feathered and no vorticity is shed, so the downstroke 
will leave discrete elements of vorticity at intervals along the wake. When the bird 
is hovering these vortex elements lie one above another, drifting downwards under 
their self-induced velocity and their mutual interaction. A similar, although differently 
scaled, wake pattern describes the wake of a hovering insect; vortex elements are 
generated by both parts of the wing-stroke, and as we see in $ 3, may also be assumed 
to be discrete. 

Each vortex element will initially be a vortex sheet of varying local strength lying 
along the trajectory of the wings. By analogy with the aircraft wake, this rolls up 
into a loop of concentrated vorticity; we must assume that this roll-up occurs reason- 
ably quickly, and does not admit any destructive instability. The strength of this 
vortex loop must be the same as the total circulation shed from the wing into the 
portion of the sheet which composes it; its impulse and energy will be the same as 
those of the sheet provided that roll-up occurs rapidly. These conditions enable the 
size of the loop to be determined if its shape is known. If the wings beat through a 
complete arc the vortex sheet will be circular in plan, and it is clear that the concen- 
trated vortex will be a circular ring. For smaller wing-beats we can see no alternative 
to assuming that the vortex loop is also circular. The circular vortex ring is the only 
shape of vortex loop which travels under its self-influence without deforming; its 
velocity and self-energy are well known. This assumption of circular vortex rings 
provides the only wake configuration which is simple enough (thanks to the azimuthal 
symmetry) to  allow relatively simple calculations of the velocity field and kinetic 
energy of a number of rings, and which therefore allows us to trace the evolution of 
the wake. 

It is interesting to discuss the relation between the kinematics of the animal’s 
wing-stroke and the resulting vortex distribution. The sense of the vorticity is such 
that it will be convected downwards, and its impulse can support the animal’s weight. 
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FIGURE 1. Diagram of actuator disk and momentum jet. 

The vorticity is not generated instantaneously, but rather throughout the stroke. 
Because of the downward convection of vorticity caused by the induced fluid down- 
wash through the wing disk the oldest portions of vorticity must have been generated 
at a higher point than the latest portions; the stroke plane must be inclined to the 
horizontal if the net impulse generated in a stroke is vertical. We see in $8 how the 
inclination of the stroke plane may be estimated. The other important kinematic 
parameter is the stroke amplitude. Reducing the amplitude will result in a vortex 
sheet of smaller area, so to obtain the same impulse the circulation must be greater, 
and hence the lift coefficient needed is greater. Different vortex-ring radii are also 
achieved by varying the wing circulation distribution (as far as an individual bird or 
insect is able); larger ring radii will be shown to result in both lower induced power 
and lower lift coefficient. The increase in wake energy associated with any circulation 
increase (despite the increased spacing between elements which would result) is 
likely to encourage any animal to use as large an amplitude as possible within the 
limits of its structure. A large amplitude also permits possible benefit from the clap- 
and-fling mechanism. 

We assume that the wake is formed entirely of circular rings arranged coaxially on 
top of each other, and then calculate the shape of the wake and the rate of working 
required to generate it. We have seen above how this concept of the wake corresponds 
to what we might expect from the wing motions; the use of circular vortex rings 
makes the problem reasonably tractable. 

2. The actuator disk and momentum jet theory 
Consideration of the actuator disk and its associated momentum jet indicates the 

general nature of the flow field and provides a convenient yardstick for comparison 
with the results of the vortex theory. We give a brief outline of the theory here. 

A diagram of the disk and its wake, with the notation used, is given in figure 1. 
The flow field contains momentum flux sufficient to support an animal of weight Mg 
with its centre of gravity a t  the centre of the disk. I n  the simplest application we 
assume that vertical force and downwash are constant across the disk and that there 
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is no azimuthal flow; it is possible to extend the theory to include both varying down- 
wash and rotational flow but the induced power js  minimized when these are absent; 
Ellington (1978) has shown that the minimum is shallow. We use the ideal case of 
minimum induced power for comparison with the vortex wake. The induced power 
is the rate of working required to generate the induced momentum jet; it is the same 
as the rate of working by the wings in overcoming induced drag, but by calculating 
it in this way we avoid the need to know lift and induced drag coefficients for the 
wings. It is not the only component of the animal’s power consumption, since work 
is also done against the profile drag (form plus frictional drag) of the wings, and in 
accelerating the wings during the stroke. 

All fluid crossing the disk receives a pressure increment such that the vertical 
force supporting the animal is distributed evenly across the disk. The presesure 
difference between the two sides of the disk is equal to the disk loading Net; the reaction 
of the wake momentum must be able to support the animal and therefore the induced 
velocities are determined. We also assume that t.he system is time independent, and 
that mass and momentum are conserved in the body of the wake. With ambient 
pressure po  and pressure just above the disk p ,  we apply Bernoulli’s principle to a 
streamline passing through the disk. Above the disk 

The downwash through the disk, uj, is constant across the disk. From ( 2 )  and ( 3 )  
the induced velocity ui in the far field is given by 

From mass conservation within the boundary of the wake 

pAui = phAu;, (5) 

where A is the disk area and h the areal contraction, and from the identity between 
rate of increase of momentum and weight supported 

pAuiu; = Mg, 

U ~ U ;  = Nd/p. 
or 

From (4) and (7) we deduce that 

while from (5) the contraction coefficient 

The induced power 
h = 8. 

is given by 

e , M  = Mgui = Mg(Mg/2pA)*. (11)’ ( 1 2 )  

The assumptions of momentum and mass conservation lead directly to the conclusion 
that the wake contracts in area by a factor of 4. 

In  the wake the fluid downwash is constant across any cross-section, while outside 
the wake there is no flow; there is a discontinuity in the tangential velocity across the 
boundary of the wake equal in the far field to the induced velocity u; on the cross- 
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section. This flow is identical to that generated by a cylindrical vortex sheet of cir- 
culation u; per unit length. In  such a vortex sheet the vorticity is convected down the 
tube a t  velocity iu;; maintaining the velocity discontinuity across the sheet, we see 
that the flow within must be a constant velocity of u;, with no flow outside. An 
alternative description to the momentum jet would be the cylindrical vortex sheet. 

The shape assumed by a semi-infinite cylindrical vortex sheet as it deforms under 
its own influence must be the same as the shape of the boundary of the momentum 
jet. It would be valuable to calculate this shape to find the dependence of the dimen- 
sions of the contraction neck on disk area and loading; as yet this problem has proved 
intractable. 

The actuator disk gives an idealized description of the true state of affairs on an 
animal’s wing disk. I n  fact, vorticity is not generated steadily but in discrete units 
associated with the wing-beats, and in addition there may be vorticity present within 
the body of the wake. We shall take account of the unsteadiness by decomposing the 
cylindrical vortex sheet into discrete circular vortex rings, each associated with a 
single wing-beat. Such a description of the wake is in good theoretical agreement 
with what we might expect, and accords well with the little experimental evidence 
available. Since flow through the boundary of the wake is possible, mass and momentum 
need not be conserved, and we can expect contraction coefficients h greater than 8 ;  
the coefficients will be shown to depend upon the disk loading and area and upon the 
kinematics of the wing-stroke. 

3. Biological application 
The data required to describe the flight of a hovering animal may be divided into 

two groups. First, the morphologic parameters describe the structural characteristics 
of the animal; those of most relevance are the body mass M and wing semi-span b. 
To estimate the power available from the muscles we also need the masses of the 
main flight muscles. The area A of the wing disk used in $ 2 is equal to mb2, so that the 
disk loading Nd is Mg/nb2. The kinematic parameters describe the dynamics of the 
wing-beat; they include the stroke period T, downstroke ratio 7 (proportion of stroke 
spent on downstroke), stroke-plane angle y and stroke amplitude 4. See figure 2 for 
a diagram of the notation. Some sample morphologic data are shown in table 1.  
The stroke-plane angle y depends on the animal involved, and is discussed in $8; 
4 usually lies between 3. and n, and 7 is about one-half (exactly 8 for insects and 
hummingbirds: see below). Morphologic and kinematic data for insects are given by 
W’eis-Fogh (1973). Morphologic data for birds may be found in Greenewalt (1962) 
and kinematic data in, for instance, Oehme & Kitzler (1974, 1975b). Background 
information on insect flight is discussed thoroughly by Nachtigall (1974; this book 
does not discuss the latest developments in unsteady flight mechanisms, for which 
see Weis-Fogh 1973). Riippell (1977) gives a valuable general discussion of bird flight. 

We find that the relevant parameters may be reduced to two. The first, the initial 
radius of each vortex ring, will be discussed in $5, and is determined from the unsteady 
aerodynamics of the wings themselves. The second, the feathering parameter f ,  sum- 
marizes the relevant kinematic and morphologic data for the animal; f is non-dimen- 
sional, and allows a straightforward non-dimensionalization of the entire problem. 
Mks units are used throughout. 
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FIGURE 2. Diagrammatic view of hovering animals. (a )  Normal hovering; note that upstroke 
and downstroke are symmetrical. (6) Avian hovering, showing downstroke wing-tip path. 

i 
\ 

I 
I I 

I I 

I 

I!? - -  I I 

\ 0: 
I I I  

I 
I 

I 
I \  I 

I ‘J 

I a I 

I 
I I 

t 

\ 

\ I I 

0 
I 

\ I 
1 

! I 
I 

I 

(a)  ( b )  

FIGURE 3. Diagrams of wake formation mechanisms in (a )  normal hovering and ( b )  avian 
hovering, showing a cross-section of the wake beneath the animal. The sense of vortex-ring 
circulation is indicated by curved arrows ; vertical arrows indicate vorticity convection. 

The feathering parameter f is defined as the square of ratio between the ideal 
velocity ui [see (S)] on the wing disk and the mean tip velocity ut. ut is defined as the 
half-circumference of the wing disk divided by the time T, for which a single vortex 
ring must support the animal, i.e. 

The true tip velocity is given by the actual distance travelled by the wing tip ($b) 
divided by the actual time spent on the downstroke (TT) or upstroke [(l -7) TI, 
although the wing’s angular velocity does not remain constant, 

ut = nb/T,. (13) 
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Wing Disk Stroke Feathering 
Body mass, semi-span, loading, period, parameter, 

Ref. M (kg) b (m) N,(Nm-*) T (a) f 

Normal hovering 

Chalcid wasp, Encarsia formosa (1) 2.5 x 7 x 0.16 1/370 0.025 

Fruit fly, Drosophila virilis (1) 2 x  10-6 0.003 0.69 1/240 0.0137 
Crane fly, Tipula paludosa (1) 2 . 8 ~  10-5 0.0173 0.29 1/53 0.0036 
Hover fly, Eristalis tenax (1) 1 . 5 ~  0.0127 2.90 1/182 0.0056 
Bumble bee, Bombus terrestris (1) 8.8 x 0.0173 9.18 1/156 0.0130 
Moth, Manduca sexta (1) 1 . 1 2 ~  0.050 1.40 1/29.1 0.0069 
Hummingbird, Anzaziliafimbriata (1) 5.1 x 10-3 0.059 4.57 1/35 0.0111 

( 7 )  

Avian hovering 

Wren, Troglodytes troglodytes (2) 0.01 0.085 4.32 0.084(5) 0.175 
Pied flycatcher, Ficedula hypoleuca (3) 0.012 0.115 2.83 0.07 0.044 
Pigeon, Columba livia (4) 0.333 0.316 10.41 0.15 0.097 
Mallard, Anas platyrhynchos (2) 1-105 0.450 17.04 0.15 (4) 0.079 

Long-eared bat, Plecotus auritus (1) 9 x 10-3 0.115 2.13 0.08 0.043 
(6) 

(8) 

TABLE 1.  Morphologic data for representative flying animals: (1) from Weis-Fogh (1973); 
(2) mass and wing data from Greenewalt (1962); (3) from Norberg (1975); (4) from Oehme & 
Kitzler (1975b); (5) author’s estimate based on allometric scaling; (6 )  never observed to hover; 
(7)  Reynolds number too low for vortices to persist; (8) treated aerodynamically as birds. 

We may distinguish different patterns of wing motions in birds and insects which 
will prove important. The wake configuration is similar in the two cases, but the 
method of vortex-ring generation differs. The distinction is illustrated in figures 2 
and 3. 

A bird does little or no useful aerodynamic work during its upstroke, and the wing 
flexes to minimize fluid drag. All lift (and thrust in forward flight) must be generated 
during the downstroke. Although the downstroke only occupies a proportion r of 
the stroke period T, the single ring produced must support the animal for the duration 
of the entire stroke, so that T, = T. Typically r is between one-third and two-thirds; 
Norberg (1975) observed the value $. This form of hovering is referred to as avian 
(figure 2 b ) .  

On the other hand, in normal hovering, typical among insects, the down- and up- 
strokes are symmetrical (figure 2a) ,  and 7 is exactly one-half. The wing tips follow 
figure-of-eight paths, and the wing is flipped over as it reverses direction so that the 
fore edge is always leading. This flip serves to ‘flick off’ any bound vorticity on the 
wing and to set up vorticity of the opposite sense, appropriate for lift generation during 
the following portion of the stroke. During each stroke two vortex rings are generated, 
SO T, = 4T. 

The distinction between the two forms of hovering arises largely as a result of the 
different mass scales of birds and insects. Each mode carries distinct advantages, 
whose effectiveness depends upon the size range (Lighthill 1977; Weis-Fogh 1977). 
Insects gain great advantage from their ability to store wing inertial energy elastically 
in the thorax, and can save a good deal of energy which would otherwise be wasted 
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(Weis-Fogh 1972, 1973). Despite the lack of any elastic resonance, hummingbirds 
also use normal hovering; for our purposes insects and hummingbirds may be grouped 
together. 

From the definition above, 
f = zL$/uf (14) 

For a bird T, = T and for an insect T, = *T, The variation off with disk area squared 
is inconvenient as it demands more accurate knowledge of the wing-span than we 
can usually expect. In  table 1 it is likely that the high value off for the wren is caused 
in part by inaccuracies in wing-span data. There is a clear tendency for f to increase 
with body mass, on separate scales for birds and insects because of the difference by 
a factor of 4 in Ti between the two groups. It will be seen that there are a number of 
inconsistencies in the table, owing to inaccurate measurements and, in the case of 
the birds, lack of adequate kinematic data; the only species for which a complete 
reliable set is available is the pied flycatcher (Norberg 1975). There is a pressing need 
for a wide variety of suitable measurements of both kinematic and morphologic data. 

It is important to appreciate the difference in wake generation between the birds 
and the insects, for although the wakes correspond, the wing motions do not; figure 3 
illustrates the two cases diagramatically. Before it begins to convect downwards, 
the vortex sheet shed by the wings lies along the trajectory of the wings' motions. 
Ellington (1978) has shown that the inclination y of each portion of the path for a 
hovering insect is sufficient for the induced velocity of the wake (or in our terminology 
the self-induced velocity of each portion of the shed vortex ring) to bring the shed 
vorticity to a plane. In avian hovering the starting vortex left at the beginning of the 
downstroke travels downwards until it combines with the stopping vortex shed by a 
flick of the wing a t  the end of the downstroke to form a plane circular ring. In both 
normal and avian hovering a plane circular small-cored vortex ring lying parallel to 
the wing disk is a good description of the final configuration of the vortex element shed 
by each powered stroke. Thereafter the ring travels downwards because of its own 
self-convection and the influence of the total velocity field of the other rings in the 
wake. Experiments by Magnan, Perrilliat-Botonet & Girard (1938) show vortex 
rings in the wake of a pigeon in slow forward flight, and photographs by Ellington 
(1978) show ring formation taking place for a tethered crane fly. Between them these 
two pieces of work provide the bulk of the experimental evidence on which this theory 
is based. It is hoped that similar photographs may become available for other species. 

The values off given in table 1 indicate that sample values f = 0.005-0*015 and 
0.05-0.15 will represent the majority of hovering animals. The most useful result 
that we derive is the rate of working by the animal in generating the wake, which 
may be compared with the simple momentum jet calculation given in 9 2 to estimate 
the tip losses associated with animal hovering. 

Further details of the biological applications of the vortex-ring theory of hovering 
are given in Rayner (1979b, $2).  
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4. Vortex-ring theory 
We use the 'classical ' small-cored circular ring of Kelvin (see, for example, Lamb 

1932, art. 161) to model the elements of the wake. I n  adopting such rings we assume, 
without justification, that the core radius appropriate in nabural flight is sufficiently 
small; no more exact analytic theory is available. 

A 'small-cored' vortex is defined as a vortex loop with vorticity confined to a 
circular core centred on the loop with cross-sectional radius small compared with the 
radius of curvature of the loop. The core is the region of concentrated vorticity, not 
the region of recirculating fluid attached 'like a bubble' to the ring. In  the case of a 
plane circular right of radius R and cross-sectional radius R, 4 R with circulation K ,  

Saffman (1970) derives the formulae 

u, = -& [log, (g) +B:] 
for the self-induced velocity of the ring and 

E, = Q p 2 R  [log, ($) + K -  21 

for the self-energy. An alternative derivation of these formulae is given in the appen- 
dix to 11. The constant A depends upon the distribution of vorticity in the core. 
When the distribution is constant 2 = +, which value we shall use; it varies otherwise 
between 0 and 8. The impulse of the plane circular ring is perpendicular to the plane 
of the ring, and is given by 

I = p ~ n R ~ ,  (19) 

independent of the core radius. Detailed mathematical studies (Fraenkel 1970;  
Norbury 1973) have verified that (17) and (18) are valid asymptotically as R,/R -+ 0 ;  
in addition Norbury has shown that the asymptotic approximations remain accurate 
for R,/R less than about a. All of these theories assume that the ring conserves its 
circulation and does not deform; Maxworthy (1972, 1977)  has shown that an isolated 
ring expands as it travels, and leaves some of its vorticity in a narrow wake. However, 
for our purposes the approximations (17) and (18) will be sufficient. We also neglect 
any effects of viscous dissipation of vorticity from the ring cores. 

Away from the core of a ring we calculate the induced velocity field from the Biot- 
Savart law (20),  since the vortex core can be approximated to a line vortex: 

where u(x) is the velocity induced a t  x by a vortex ring of strength IC, with circum- 
ference parameterized by s. Consider the velocity U(X) a t  x = ( r ,  0 ,  h) due to a ring 
of radius R centred at the origin (figure 4); u is relative to still fluid, independent of 
the motion of the ring itself. Then 

ae ; 2n(h cos 0, hsin8, R - r cos 0) 
u(x) = - 47~ , [r2-22rRcos0+R2+h2]S KR s 
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t: 

FIGURE 4. Notation for calculation of the velocity field induced by a circular vortex ring with 
centre 0, radius R and an infinitesimal core, in Cartesian co-ordinates. Point on ring P ,  
X = R (cos 8, sin 8, 0). Field point Q ,  x = (T ,  0, h ) ;  s = Re; t = dX/ds = (-sin 8, COB 0, 0). 

u(x) .f = 0 because of symmetry about the 6 axis. We define functions I, and I, such 
that 

u . a  = (~Rh/47r) I.(r, R ,  h)  
and 

u . 2 = (~R/47r)  (RIl(r, R ,  h) - rI,(r, R, h)).j 

Il and I, can be evaluated in terms of the complete elliptic integrals K and E ,  defined 
as 

'I ( 2 2 )  

With the eccentricity e given by 

we derive 
e2 = 4 r R [ ( ~ + R ) ~ + h ~ ] - l ,  ( 2 4 )  

Il(r, R ,  h)  = [r2 + R2 + h2 - 2rR cos 61-3 de (25) 

(26) 

/02n 

= 4[(r + R ) 2  + h2]-3 (1 - e2 cos2 8)-% d8.  Ioin 
From tables of integrals (Gradshteyn & Rhyzhik 1965, $3 .84) ,  we define G ( e )  such 
that 

Il(r, R,  h) = 4G(e) [ ( r  + R) ,  + h2]-3, (27 ) 
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where 

Similarly, 
G(e) = E(e) (1 - e2)-l. (28) 

12(r, R, h) = 4[(r + R)2 + h2]-g cos 2B( 1 - e2 cos2 8)-8 de (29) 

= 4H(e) [(r + R)2 + h2]-3, 
where 

G and H are evaluated numerically using standard routines to calculate E and K .  
If e -+ 1, E(e) .+ 1 and K(e) - log, (4(1 -e2)-+) + O ( ( l  -e2)*); the logarithmic singu- 
larity corresponds to the close approach of x to the vortex core. I f e  -+ 0, corresponding 
to points near the z axis or to points in the far field, the following expressions are used 
for G and H :  

G(e) = &r(l+$e2++ge4) for e2 < 0.05, 

H(e) = & r e 2 ( 1 + % e 2 )  for e2 < 0.01. (32) I 
With the aid of (28) and (31) we can express the velocity field in cylindrical polar 

co-ordinates: 
u = u,%+u,ii, 

with e given by (24). It will prove convenient to non-dimensionalize lengt,hs with 
respect to the initial ring radius R'b; lengths on t,his scale will be denoted by an over 
bar. The wing-disk radius b will not necessarily be the same as the initial radius R'b 
of a vortex ring. Values of R' are calculated in $5.  We also introduce a two-component 
vector fi = ( R , Z ) ,  where RR'b is the radius of a ring and ZR'b the ordinate on the z 
axis. We can thus express the velocity field induced at  the point R = ( r ,  0, Z) by a ring 
jj as 

K 
u(%;p) = - m; P),  477R'b 

where 
- 4R(2 - Z) H(e) U . % =  

and 

We assume that the rings forming the wake have small, but finite, core radius; we 
must allow the core radius to vary as the ring size varies to keep the volume of the 
core constant. Initially the ring has radius R'b and core radius &R'b, where & 5 4. 
At all other times the core radius R, R'b and ring radius RR'b must satisfy the con- 
tinuity equation 

R = 1 initially for each ring. 
2nR x 7TEg = 277 x 77&2; (35) 
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with circulation K .  The induced velocity at  W due to this family is given by 
Suppose now that there are n vortex rings present, denoted by pi( 1 < i < n),  each 

u(%) = - 5 U((R;p,) (36) 4 d R ’  i = l  

provided that si is not within a vortex core. The velocity induced on a member f i r  of 
the family is given by 

where g,(fij) is the self-induced velocity of ring pi, given by, from (17), 

[from (35)], since R’ and E; are the same for all rings. 
The theory outlined above is essentially that of Kelvin. If only two rings are present 

it predicts that they pass through each other alternately until the effects of viscosity 
have diffused the vorticity away (Batchelor 1967, p. 523). Maxworthy (1972) suggests 
on the basis of experimental results that the rearward ring is drawn through the 
centre of the foremost ring and becomes ‘wrapped ’ around it to produce one stronger 
ring. The model displays both patterns, depending on the size and strength of the 
rings. Attempts have been made in the model to allow adjacent rings to amalgamate 
should they become sufficiently close, but not enough is known about the behaviour 
to develop a reliable algorithm; the results without any form of amalgamation are 
easier to interpret, but require a greater length of computing time. 

The question of stability, either of a single ring or of the whole system, is important 
when we calculate the energy involved. Widnall & Sullivan (1973) and Widnall & 
Tsai (1977) have shown that a wave-like instability develops around the circumference 
of a single ring. A chain of equally spaced similar coaxial rings has been investigated 
by Levy & Forsdyke (1  927), and was found to be unstable to perturbations parallel 
to the axis; we find some instability of this kind, but the chain of rings does not dis- 
integrate as their calculations suggest it should. We neglect the possibility of the 
breakup of a single ring through radial perturbations, with the justification that this 
will occur only when the ring is sufficiently far along the wake to have little effect on 
other rings near the wing disk or the contraction neck. By the same argument the 
energy of the system cannot be significantly affected by any breakup or instability 
far from the wing disk. 

One of the most useful indications of an animal’s flight performance is the power 
consumption, for this is directly dependent upon the fuel reserves and the chemical 
efficiency of the muscles. A significant portion of the hovering energy cost is involved 
in generating fluid momentum to support the animal’s weight, and is termed the 
induced power. We estimate this from the family of vortex rings by calculating the 
energy increment in the wake when a single ring is added to the chain at  the wing disk. 

With vorticity o ( x )  distributed over a volume V ,  the total kinetic energy of the 
fluid flow induced is given by 
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(Lamb 1932, art. 153). When the volume V consists of n separate closed vortex loops 
of circulation K we can rewrite (40) as 

E = - p  t i ( X ) .  tj(X’) ds ds’) , 
877 i = l  

j+i 

where the first term within the curly brackets accounts for the self-energy of the 
loops. It is not helpful to discuss the total energy of the wake when many rings are 
present since this will increase indefinitely. The increment in energy between the 
generation of successive rings tends to a finite value, and is readily calculated. Suppose 
that there are n rings present in the wake, {ci; 1 < i < n>, and that a further ring 
@n+l = ( 1 , O )  is added on the wing disk. Then the energy increment AE for time T, 
is given by 

where the self-energy of the new ring is 

8, = log, (S/Wh) - Q (43) 

from (18), and the mutual energy 8, between ring i and the new ring n + 1 is 

with notation as in figure 5. From (44) 

- -  
where e2 = 4Ri(2f + (R, + l)2)-1. 

In  terms of complete elliptic integrals 
- - 4Ri J ( e )  

E m ( i j n + l ;  pi) = - [q + (Ei + 1)2]t’ 

(46) 

(47) 

where 

For e2 < 0.05 we use the expression 

J(e)  = e-2{(2 - e2) K(e)  - 2E(e)). 

J ( e )  = &re2(i+$e2+&$e4). (49) 

By substitution in (42) we can readily calculate the rate of energy increment 
AEIT, for this wake structure, which we express non-dimensionally as CT by dividing 
by the energy rate Pi,M for the momentum jet (12). 

By this definition, the energy rate B when n rings are present is 
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2 

\ 

ZA'b 

Point Q on ring i down wake: 

xi  = R'b (Ri cos @: Ri sin 4: z.) 
~i = R'b 7lI@: 
ti = dXi/dSi 

Point P on ring + I on win 

FIGURE 5 .  Notation for calculation of interactive (mutual) kinetic energy between a vortex 
ring n+ 1 on the wing disk and a ring i far down the wake. 

I n  the application to animal hovering we determine K from the momentum of a 
single initial vortex ring, which must support the animal for time T,. This momentum 
is given by circulation times ring area times fluid density; it is vertical because the 
ring is planar and horizontal. The impulse required to  generate this ring in the pre- 
sence of vorticity elsewhere in the field is the same as the impulse required to  generate 
the ring in isolation. The rate of increase of wake momentum, i.e. the impulse of a 
single ring divided by T,, must balance the force which the wake must provide, i.e. 
the animal's weight. Therefore 

by substituting for K from (52) into (51), we find that 

K~AR'ZIT, = Mg; (52) 

. -  

It will prove useful to  rescale f as 

(53) 

(54) f' = fR'-4, 
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which is equivalent to redefining f in (16), with A replaced by RfaA; then 

is the non-dimensional energy rate for the vortex wake of a hovering animal. The 
induced power is given by pi = C T P , , ~ ~ .  Strictly, r~ as defined in (55 )  should be the limit 
as n becomes large. In  practice CT converges rapidly to a definite limit, and does not 
change as further rings are released. 

5. The wake model 
We have seen how the wake of an animal in hovering flight may be modelled by a 

chain of stacked coaxial circular vortex rings. A first approximation to the configura- 
tion is the momentum jet generated by an ideal actuator disk. The object of the cal- 
culations described in this section is the construction of a numerical model of the wake, 
which will predict the development of its shape with time. If we know the array of 
ring positions (zit 1 < i < n} when n rings are present we can calculate the induced 
power required to generate the wake by the method outlined at the end of $4. 

If we assume that a,n ideal equilibrium configuration of the wake exists, we can 
reasonably visualize it by breaking up the boundary of a momentum jet into discrete 
vortex rings. The wake is then a semi-infinite chain of rings, of equal radius (and 
equally spaced) in the far field, and with a contraction region just below the wing 
disk. This configuration would have to be self-consistent in the sense that it deforms 
‘into itself’ over a single wing cycle; any member of the family of rings travels and 
deforms to become the next in the chain, and a further ring is added on the wing disk. 

The problem can be conceived as that of finding the array &(t), 1 6 i < n} such 
that Bi(t + T,) = f i i+ l ( t )  for all t an integer multiple of T,. Levy & Forsdyke (1927) 
have demonstrated that the semi-infinite chain of vortex rings which should con- 
stitute at  least the far-field wake is unstable. Therefore any attempts to relax onto 
the solution from a nearby estimate are unlikely to be successful. 

An alternative approach is to start generating equal rings at equal time intervals, 
with initially all fluid a t  rest. This situation is possibly more realistic; it enables us 
to trace the evolut,ion of the wake with time, and to demonstrate that the ideal semi- 
infinite chain conjectured above is not usually observed. We follow this procedure. 

We shall observe that the far-field wake generally breaks up, unless f ‘  is very 
large. The near field, which has a dominant influence on the energy, converges to a 
constant contraction and steady ring spacing; in this region the solution i s  self- 
consistent. We also find that a large vortex ring is formed at the lower open end of 
the tube; this is the agglomeration of several rings, and encourages fluid recirculation 
outside the boundary of the wake. Note that the term boundary now refers to the 
trajectory of the vortex ring centres, and that only in the case of small f ’ is the boun- 
dary similar to a vortex sheet within which all flow is confined. The bound ring is 
similar to the ring found at the top of a rising plume of lighter fluid; its presence is 
suggested by photographs of the crane fly by Ellington (1978). It becomes less pro- 
nounced as f ’  increases. To clarify these points, a diagram of a typical wake configura- 
tion is given in figure 7 (a). 

We trace the growth of the wake as follows: suppose that the wake has been growing 
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for time t [ (n - 1 )  T, < t < nT,]; there are n rings present, each specified (as in $4) 
by R'bFj(t) ( 1  < j < n).  Then the configuration at time t + 6t is given approximately by 

where the velocity terms on the right-hand side are defined in (37). We may add to 
them a further term, 

synthesizing the effect of the bound vorticity on the wing disk during the growth of 
ring n + 1; Kf,(t) is the supposed dependence of the bound vortex strength on time; 
by setting cn+l = ( 1 , O )  we indicate that we assume that this bound wing vorticity 
has circular symmetry. The assumption is necessary as azimuthal symmetry of the 
wake is vital to this argument. 

We allow L time steps in the interval T, between the generation of successive rings, 
and indicate the step reached during a single cycle by a superscript l(0 < 1 < L); 
then St = T,/L. We non-dimensionalize (56) by dividing by R'b, to define the itera- 
tive procedure 

iii 

which traces the evolution of p i .  At the end of each stroke, when 1 = L, n is incremented, 
a further ring is added ( p i + 1  = (1,  0 ) ) ,  and I is reset to zero. The system depends solely 
on the parameters f '  and &, and upon the choice off, and L. Greater accuracy can 
be achieved by increasing L, but at  the cost of greater computation time; a value 
L = 8 proved suitable. At the completion of a cycle, (55) can be used to calculate the 
rate of working averaged over that cycle. 

We must now conside1 the appropriate values of R', which depend, as we have 
mentioned in 5 1, on the distribution of wing circulation. The feathering parameter f is 
determined for the animal concerned; f is related to the modified feathering parameter 
f '  by (541, and it is upon f '  that the wake depends. The variation of f '  with R'-4 
allows R' to influence the resulting configuration significantly, so that an accurate 
value is important. R' is the scale for all wake dimensions, so that it will also affect 
the size of the resulting wake pattern. However, exact derivation of R' would be 
complicated, and represents an important calculation in its own right; we do no more 
here than suggest a simple algorithm for its estimation. The initial core radius & is 
harder to derive, but has a less important effect on the shape of the wake, and sample 
values will suffice. 

As each wing moves through the air it  leaves u trailing vortex sheet; the extremities 
of the sheet are closed by the starting and stopping vortices. Initially an element of 
the sheet lies on the trace of the wing, but it will move immediately under the influence 
of the remainder of the sheet and of the bound vorticity on the wing. We assume that 
the final configuration of the vorticity forming the sheet is a circular vortex ring. The 
size of this ring is determined by assuming that it has the same impulse as the vortex 
sheet; the circulation is the same as the total circulation K in the sheet. If the wing 
circulation varies during the stroke we are not able to determine the strength of the 
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vortex ring by a straightforward calculation, so we assume that the circulation 
varies only with wing-span. We assume also that the vortex sheet initially forms a 
plane ‘butterfly ’-shaped sector of the wing disk matching the area mapped out by 
the wings. 

Let the wing circulation be given by I?([), with r ( 1 )  = 0, where [ (0 < [ < 1)  is a 
measure of radius on the wing. The wings beat from -84 to 44. An annular sector 
of the vortex sheet with radius between be and b ( [ +  6c) has strength - r’(c) Sc. The 
contribution 61 to the total impulse of the sheet from this annulus is 

Only the portion of the sheet for which I?’([) -= 0, say [, < [ < 1, where 0 < [,, 
can roll up into a vortex ring producing useful mass support. The remainder of the 
sheet rolls up into a smaller ring of the opposite circulation which will interact with 
the animal’s body and will presumably be annihilated. This opposing ring has small 
radius, therefore its energy and impulse are small; to simplify the calculation they 
will be ignored. The total useful impulse is then 

The total circulation in this part of the sheet, 

= ~ ( c o )  > 0, (64) 

will be the circulation of the vortex ring. We determine the initial ring radius R’b 
by balancing impulses between the ring and the sheet; therefore 

from which we can write 

where A, = 4/77. 

Sample values of Rt2 for some likely circulation distributions are given in table 2. 
For a semi-elliptic wing a reasonable estimate of R‘ (allowing for A, < 1) would be 
0.7 or 0.8. Sample values of &, = 0.1, 0.171 and 0-225 span the likely range of values 
of the core radius, and we do not attempt to find a more accurate value. 

I n  the interval between successive strokes of the wings it is necessary to synthesize 
the effect of the bound vorticity on the wings, which will in time become part of the 
next vortex ring to be shed. This is the reason for the function f J t )  in (58); in the form 
in which it appears, it is assumed that the bound vorticity has circular symmetry. 
We must have f ,  = 0 when t = 0; f, takes its maximum value of 1 when t = T,, and 
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Rf2/A, 
% l  
Q 
0.923 
0.967 
4 
0-708 
Q 
0.759 
0.708 

0.808 

TABLE 2. Sample values of R‘2/h, for typical circulation distributions I’(C)/I?,. The distribution 
marked * corresponds to the form of a bird’s wing chord given by Oehme & Kitzler ( 1 9 7 5 ~ ) ;  
that beneath it is proportional to wing-span times chord ; in hovering this is proportional to 
local wing velocity times chord, and on a simple theory would be a good estimate of the cir- 
culation distribution. A, is a measure of tho stroke amplitude ( A ,  = ($/n)*); for most species A: 
will lie between 0.67 and 1 (Weis-Fogh 1973). 

grows steadily in between. One extreme form for f,,, which has little physical signi- 
ficance, is linear growth 

while the other is a sudden step-like growth 

f,,,l(t) = t/TL (67 )  

where s < Tw/L. A more realistic form, with some physical significance as i t  is allied 
to  observed wing velocities, is the semi-sine-squared form 

0 for t < +Tu., (69a) 
sin2n(t/T,- +) for < t < T,. (69b)  A&) = ( 

The effects of each of these three possibilities are considered. The shape of the wake 
when f ’  is large depends significantly on f,, suggesting that we need to know more 
about conditions on the wing disk, but the energy rate is only very weakly dependent 
on f,,, When f ’  is smallf,, has very little influence on the wake configuration. 

The model described above has been applied for a range of values off’  between 
0.001 and 1, so that all realistic combinations off and R‘ are covered, and with suffi- 
cient combinations of the other parameters (R;, L and fv) to ensure that all possibilities 
have been covered. The combination with R; = 0.171,  L = 8 and f? ,  = fi.,3 is regarded 
as the average or most representative. The results are described in the following 
sections. Each calculation required about 40-50 iterations (wing-strokes) for con- 
vergence to be established; large values off‘ required fewer steps, while the smallest 
f ’  required many more. I n  general B converges faster than the wake geometry, since 
most geometrical instabilities occur in the far field. For f ’  = 0.01, B converges 
after about 30 iterations, while for f ’  = 0.5, E,  is large compared with the mutual 
energy with rings away from the contraction region and only 3 or 4 strokes are needed 
for convergence of B. 
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For small f' the wake is close to the momentum jet generated by an actuator disk 
of area A' = rrRt2b2. Note that this area A' is different from the area A used in $2 ,  
and with which e,M was defined. The induced power for this jet is = Pi,M/R'. 
The limit of the wake a t  large times as f' tends to zero should be identically this 
momentum jet. However, since for very smallf' the wake grows too slowly, i t  has not 
been possible to do more numerically than to indicate the general truth of this sup- 
position. For moderately small f '  ( x 0.005) the vortex wake is similar t o  the momen- 
tum jet (figure 7 a )  in the contraction region, and moreover c is close to  I/R', so that 
P;,M is then a good estimate of the induced power. 

Calculations were performed on the IBM-370 a t  Cambridge, with graphical output 
of the wake configuration from which the ring spacing and far-field radius were 
measured. Each calculation took between 60 and 120 s of computing time, so that 
the number of applications was forced to be limited. A selection of the calculations 
was allowed to proceed until about 125 rings were present (about 20 min) with no 
sign of change in the convergence of the wake or in the value of IT, and with no large- 
scale instability becoming evident. 

The information that we record is the energy rate (non-dimensional induced 
power) CT, the areal contraction ratio h,  and the spacing S between successive rings 
just below the contraction neck; h is the ratio of the cross-sectional area of the wake 
(at either the narrowest point, or when it has settled to a steady value) to the initial 
ring area nRr2b2. 

We can relate h to a theoretical estimate d of 8 by calculating the spacing of an 
infinite chain of equally spaced identical rings of radius RR'b = hbR'b and the same 
circulation K [as in ( 5 2 ) ]  as each ring in the vortex wake. Locally the vortex wake 
where we record 8 is similar to a chain of identical rings. Since the velocity field falls 
off rapidly the estimate d for an infinite chain should be close to the measured value 8. 
The calculation gives a valuable check that the wake model converges to a realistic 
solution. 

A ring in the centre of this infinite chain will appear to be sandwiched between two 
identical but opposing semi-infinite chains. Let the separation between any two 
adjacent rings be dR'b; in time T,,, a ring travels this distance under the combined 
effects of mutual and self-induced velocities. Relative to fluid a t  rest a t  infinity 
each wake element will appear to travel along the wake with velocity dR'blT,.. By 
using (37)  with pi = ( E , j d ) ,  and noting that the two opposing semi-infinite chains 
induce only a velocity component parallel to  the chain, the ring velocity must satisfy 

The mutual velocity component 
0 0 -  urn = 2 U(f i0;&) .2  

j = 1  

may be written after (34)  as 
m 

(73)  urn = 8R2  C (G(e )  - H ( e ) )  (4R2 + j 2 d 2 ) - l ,  
j=1 



718 J .  M .  V .  Rayner 

1.5 

1 .o 

- 
d 

0.5 

I I I 
0 0.05 0.1 0.15 

f' 
FIGURE 6. Graph of a(f', B, RiLfor R = (+$, a; = 0.1, 0.171, 0.225. 

x , predicted values of 8(f') with RA = 0.171, and an appropriate R ( > +). 

where 
e2 = 4X2(4R2+j2$)--1. 

Then, by substituting in (73) for G and H from (28 )  and (31), 

i7,,$ = 2.R-1 
co 

e(K(e) - E(e)) .  
j=1 

We no&-dimensionalize (70 ) ,  and find that the solution 2 must satisfy 

us + 2 x 4  V (  iP/4R2) = 2 a/?T f ' 
as a function of R and &,, hence of h and RA. The function V is defined as 

V(P2)  = $ -E(e ) ) ,  
i=1 

with 
e 2  = (1 + j 2 ~ 2 ) - 1 ,  

The solution 2 to (76) depends slightly on i?;, but is not significantly affected when 
2 = ha varies between (+)t and 1.  A graph of a( f ') for i? = (a)* and three values of 
R; is shown in figure 6, together with values of 8( f ') predicted by the model. There is 
good agreement between the results of the above calculations and the model's pre- 
dictions, which gives confidence that the model converges to a realistic solution. 
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Plane through 
animal’s centre of mass 
(wing disk) 

t 

FIGURE 7. Diagrammatic cross-section through hovering vortex wake for a small insect (e.g. 
Tipula or Eristalis) (f’ = 0.005). Circles represent vortex cores; larger radius rings have smaller 
cores. Note smooth boundary of stack of rings just below the wing disk. At this (low) value off’ 
rings are close enough together for inflow through the boundary to be small, so that areal con- 
traction is only slightly greater than one-half. In (a ) ,  21 rings are present and a bound vortex 
is being formed at the lower end of the stack of rings. I n  ( b ) ,  29 rings are present and the bound 
vortex composed of the oldest 14 rings has broken away and no longer influences the flow. In 
figures 7-11 each vortex ring is drawn to scale; the initial core radius of each ring is BLR‘b. 

6 .  Description of the wake 
The observed structure of the wake depends largely upon the modified feathering 

parameter f’ and the wing-disk vorticity specified by f,. For large values off’ each 
ring has high circulation and travels fast; the spacing between the rings is large, 
therefore interaction between wake elements is small. There is no contraction, and 
the ring positions remain remarkably even all along the tube (figure 10). 

For smaller values off’ the circulation of each ring is less, and interaction becomes 
more significant. A longer time is required for convergence to be achieved and there 
is also a limited amount of non-destructive instability in the far field. For very small 
f adjoining rings approach closely, there is less opportunity for inflow through the 
wake boundary, and the solution approaches the vortex sheet associated with the 
momentum jet (see $2).  

The more interesting results concern the range f 5 0.1, and it is this range that we 
shall discuss in detail. As time proceeds the first vortex rings generated join to form 
what is effectively a single ring of large radius which travels at the open lower end 
of the wake. The general pattern is similar to that shown in figure 7 (a).  If the analogy 
with the momentum jet were exact the succeeding rings would describe a smooth 
tube stretching back from the inner boundary of this bound ring to the wing disk 
and at some intermediate point reaching a minimum radius which would give the 
contraction coefficient we require. Around this minimum contraction the wake 
boundary should be cylindrical with constant spacing determined approximately by 
(76). This structure is indeed observed for very small values f’ < too small to 
be realistic for flying animals; adjacent rings are close enough to overlap and the wake 
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Bound vortex being 
rmed prior t o  breakaway 

f next group of rings 

FIGURE 11. Wake for very smallf’, unrealistic for any animals, after 110 iterations. Note the clear 
bound vortex, and also far-field breakup, which appears to remain very stable. f’ = 
Ei =0.171. 

boundary resembles the vortex sheet; not surprisingly, the smallest contraction 
coefficients are measured in this regime (figure 11). 

With larger values off‘ ,  say 0.005 < f’ Q 0.015, the spacing is also larger; in the 
contraction region the rings follow a smooth path, but are sufficiently far apart for 
entrainment into the wake to be possible under the influence of the starting ring; as 
a result larger contraction coefficients are observed. This range covers the majority 
of the insects; sample wake configurations are shown as figures 7-9. In all the dia- 
grams of the wake the top ring - that most recently generated - lies on the wing 
disk, and has radius R’b. As we have seen in $ 5 ,  R‘ depends on the wing circulation, 
but not on f. The ratio A; is typically between 3 and 8, reaching 1 in the case of the 
Coleoptera; a reasonable wing circulation might give R’2/h,, = 0.9, whence R‘ = 0.8 
is a good estimate. 

Figure 12 shows measured values for the contraction coefficient h as a function off 
for typical values of R‘, with R,, = 0.171 and a semi-sine-squared f,. Figures 7-11 
show contraction occurring for different values off ’. Values of A‘( f ’) are measured 
from plots such as these to within graphical accuracy; A’ is the contraction relative 
to the initial ring area nRf2b2. Thus the far-field area is .rrR‘2b2h’( f I ) ,  which must equal 
.rrb2h( f ), where h is the true contraction coefficient relative to the wing-disk area. 
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L 1 I I I 1 __ I 
0 0.1 0.2 ‘ 0.3 

f 
FIGURE 12. Graph of measured contraction coefficients h relative to disk area as a function of 
f for various ring radii R’, with B; = 0.171, and a semi-sine-squared fw. Dashed portions of 
curves indicate that rings expand in the far field, so that h cannot be measured. 

Therefore h ( f )  = Rt2h’( f ’). (78) 
In this way it is possible for h to take values substantially smaller than the value of 
4 relative to the disk area predicted as the minimum by momentum jet theory. 
Once again, the details of the formation of a vortex ring on the wing disk are very 
important. For large f ’, greater than about 0.3, the rings in the far field do not con- 
tract, but begin to expand immediately. In some cases they will tend to a steady 
far-field radius, in others they will continue to expand as they travel; unless R‘ is 
substantially smaller than the estimate of 0.8, wake expansion is unlikely to be rele- 
vant since these values off ’ are unrealistically large. Expansion is indicated in figure 
12 by a dashed continuation of the h(f) curves. 

The diagrams of the wake in figures 7-11, and the graph of A( f 3 in figure 12, are all 
concerned with the ‘average ’ conditions of semi-sine-squared disk vorticity and an 
initial core radius &, = 0.171. Variations of RA produce small changes in ring spacing 
(figure 6) but do not greatly alter the contraction coefficients (these are approximately 
1% lower if Rh = 0.225, 1% greater if Rh = 0.1). Variations in the form of the disk 
vorticity f, are more important when f’ is large. As we should expect, the spacing 3 
which depends almost entirely on local conditions in the near-field wake, is not affected, 
but the contraction coefficient h does change, and with i t  the whole structure of the 
far field. Fortunately, the energy, which is the main object of this calculation, is 
unchanged, so that it is not necessary to consider the true form off, too deeply. 
The step-function f, [form 2, (68)l reduces the effect of disk vorticity to a minimum; 
all of the influences on a ring during the early part of its life cause it to contract, and 
the smallest values of A’ are observed, approximately 8% less than those with the 
more realistic semi-sine-squared growth. A linear f, [form 1, (67)] has a sizeable 
influence towards expansion during the early life of a ring; contraction coefficients 
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are much higher, and A’ becomes greater than 1 for f ’ > 0- 1. It is difficult to know how 
widely this form off, is relevant; although it may apply to some insects with unusual 
flight mechanisms (e.g. Lepidoptera, Drosophila), it is unlikeIy to apply to any animals 
for which f ’  is as large as 0.1. This is well into the size range of the birds, when a semi- 
sine-squared f, is almost certainly appropriate. 

Another aspect of the wake which becomes apparent after a number of wing-beats 
is its stability. Levy & Forsdyke (1927) have demonstrated that a chain of parallel 
vortex rings is unstable to radial and longitudinal perturbations for all spacing-to- 
radius ratios. Their calculations are purely infinitesimal and do not suggest how per- 
turbations would grow. We find that instabilities do not grow indefinitely, but that 
adjacent rings join together to form separate larger vortex rings. This configuration 
is observed a t  all values off’  except very large values ( > 0.1), where adjacent rings 
are sufficiently far apart for interaction between them to be small. This instability 
does not occur within two radii of the wing disk, so that the contraction region will 
be unaffected by the perturbed velocity field. In  figure 7 ( a ) ,  after 20 cycles a large 
vortex is clearly developing a t  the open end of the chain; in figure 7 ( b ) ,  8 cycles later, 
this large vortex has broken away and a replacement is beginning to  form, before the 
pattern repeats. Figure 11 shows the situation for a small value off ’ ( = 0.001) after 
very large time; three large vortices each composed of about 25 individual rings are 
present, and a fourth is beginning to  form. Once this structure has developed, the 
wake appears to  be very stable, although for still larger times there may be some 
amalgamation of the larger rings. A similar, though less clearly defined, breakup is 
shown for larger values off’ in figures 8 and 9. I n  all cases the contraction region 
remains very stable, and self-consistent. 

This controlled instability is not destructive, and appears to be less likely to destroy 
the character of the wake than viscous dissipation, which is not considered here. It 
does imply a periodicity which might be of physical relevance. There are a number 
of observations (C. P. Ellington, private communication) that hovering insects oscil- 
late vertically at a frequency several times slower than their wing-beats; it is con- 
ceivable that the impulsive reaction of the wake instability is the cause. It is of course 
possible that body inertia is too great for this to be significant, and that the oscillation 
is caused by minor changes in stroke kinematics to  assist position and direction 
sensing. 

I n  figure 10, f ’  is large and there is no tendency for adjoining rings to  coalesce, 
but some rings have passed through their neighbours, so that two adjacent rings 
have changed position. This effect was predicted by Kelvin, and was mentioned 
above ($4).  Maxworthy’s prediction of rings joining together is observed when f ’ is 
much smaller; rings are then much closer together, and the induced velocities from 
other rings in the chain have a significant effect. 

It will be noted in figures 7, 8 and 11 that whenf’ is small ( 5 0.01) adjoining rings 
overlap, and that for the very smallest f ‘  the centre of a vortex core can often fall 
within the cores of adjacent rings. This small spacing is to be expected as the convec- 
tion velocity is proportional to the circulation K ,  which is itself proportional to f’. 
The wake is close to  the momentum jet, and there can be little inflow through the 
wake boundary, so that the assumptions of mass and momentum conservation are 
valid. The measured contraction A’ in figure 11 (f’ = 0.001) is only slightly greater 
than 9. The objection can be raised that the Biot-Savart formula for the induced 
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velocity of a vortex ring (20) approximates the ring by a line vortex, and that this 
formula is applied outside its range of validity. In fact, the method used to calculate 
the induced velocity [(20-(34)] is accurate quite close to the vortex core because the 
numerical routines used to calculate K and E are very accurate as e approaches unity 
(although of course the calculation of K breaks down when e = 1). It is unlikely that 
use of the three-dimensional form of the Biot-Savart law, with its attendant numerical 
difficulties, will give any more accurate results. 

7. Energy consumption and induced power 
The most important restriction on an animal's flight fitness is the amount of energy 

the chosen mode of flight consumes; there is a definite upper limit on the rate a t  
which oxygen can be supplied to the muscles and converted into mechanical work. 
By allowing an oxygen debt to develop, a higher rate of working can be achieved 
for a limited period (as is probably the case for the flycatcher; Norberg 1975). Weis- 
Fogh & Alexander (1977) estimate the maximum mechanical power available from 
striated muscle operating continuously without an oxygen debt as about 250 W per 
kg muscle mass; birds a.re unlikely to achieve this power output. 

The muscles must provide sufficient power to overcome the form and frictional 
drag (profile power) and the inertia cf the wings (inertial power), and to generate the 
wake which supports the animal (induced power); in forward flight it is also necessary 
to overcome the form and frictional drag of the body but this is small in hovering. 
Weis-Fogh (1972,1973) has discussed the methods by which profile and inertial powers 
are calculated, but calculates profile and induced power together by the use of general 
drag coefficients and measured wing polars; this method introduces all of the un- 
certainty of lift and drag coefficients and the steady-state assumptions. The method 
suggested here is to calculate profile and inertial power according to the method of 
Weis-Fogh (q.v.); the drag coefficient to be used for the profile power is that at zero 
lift; for Drosophila C, z 0.35 (Vogel 1967), for the hummingbird Amazilia C, z 0.04 
(Weis-Fogh 1972), and a good estimate for birds in general is C, z 0.02. In hovering 
flight of birds both the profile and the inertial power calculated in this way are negli- 
gible compared with the induced power and can be neglected. For the insects they 
form a substantial part of the total power and cannot be ignored. 

We are concerned here with the induced power Pi, calculated by the method of $4, 
(40)-(55), for the wake configuration specified by the iterative procedure (58). Since 
the induced power q,M for the momentum jet is an estimateof the true induced power, 
Pi is expressed as the ratio r to the momentum-jet value given by (53) and (55). As 
the momentum jet is an ideal description of the wake corresponding to the minimum 
energy state we should not expect B to take values less than 1. Where it does so is 
probably the result of numerical inaccuracies; it  never takes values less than 0-93. 

A graph of B against f for various values of R' and .i?h is shown in figure 13. For the 
insects (0.005 < f < 0.015), u is close to 1,  the exact value depending on R' and to a 
lesser extent Ri; it  is given approximately by B = 1/22'; variations with f are small. 
Thus a simple correction factor to the momentum-jet induced power is adequate. 
Therefore for the insects, with an accuracy of f 5%, 

(79) 
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FIGURE 13. Energy consumption rate as a function off for various ring radii. Vertical bars 
show tolerance to variations in core radius R;;  tolerance to disk vorticity is negligible and is 
not shown. Note that the ~ ( f )  curves are very close to straight lines. 

This is the induced power required for a momentum jet generated by an actuator 
disk of radius R'b; as has been stated above, in this range off the momentum-jet and 
vortex-ring wakes are close provided that the actuator disk is correctly defined. We 
may conclude that for insects the momentum jet is a good description of the flow, 
and predicts power consumption accurately. The vortex-ring model displays the 
formation of a large ring a t  the lower end of the chain of rings, and also some con- 
trolled instability. 

For the birds, the momentum-jet power <,M [or even the modified momentum-jet 
power defined in (79)] greatly underestimate the true power. Indeed, increases 
almost linearly with f, according to the approximate formula 

0.95 1.2 
q = -  +-f, R' RI5 

from the graph of figure 13, when I?; = 0.i71; similar formulae can be found for other 
values of RA. This formula permits a rapid estimate of the induced hovering power for 
any bird provided that f and R' are known. 

Calculations showing the application of the above results to several species are 
given in Rayner ( I  979 b, 8 2).  These indicate the range of adaptive measures taken to 
reduce the energy cost of hovering flight. 
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FIGURE 14. Notation for calculation of stroke-plane angle y in hovering flight. 

The most important conclusion from this work is the excess induced power in 
avian hovering due to the separation of vortex rings in the wake. This implies that 
birds (other than hummingbirds, for which f is small) experience considerable diffi- 
culty in meeting the power demands of sustained hovering, since the tip losses pre- 
dicted by (80) are significant. 

As an example, for the flycatcher, f = 0.044; with a R' of 0.67, v = 1-81, so that 
the animal requires 0.23 W to hover continuously. The major pectoral muscles, which 
are of mass 1-9 x 10-3 kg, working continuously a t  optimum efficiency would produce 
a maximum of 1.9 x x 250 = 0.48 W according to Weis-Fogh's estimates. Since 
they operate for only about one-half of the total wing-beat, a more realistic maximum 
is about 0.20 W; thus, if the flycatcher were hovering aerobically, it would be at the 
very limit of its possible range, and hovering is more likely to be anaerobic a t  a lower 
efficiency, especially so if R' is as low as 0.67. At this value of c the tip losses are as 
high as 17% of the total induced power, compared with 

The above calculation is purely an example of how the rule-of-thumb expression 
(80) can be used to estimate the hovering fitness of birds; for a more exact calcula.tion 
profile and inertial power must be included. Knowledge of the chemical efficiency of 
the muscles will indicate whether such hovering is possible aerobically or anaerobic- 
ally. 

8. Inclination of the stroke plane 
We have already seen that the stroke plane must be inclined to the horizontal so 

that the net wake momentum is vertical; as a feature of this model we assume that 
all vortex elements have vertical momentum. We perform a simple calculation to 
estimate the angle y at which the stroke plane is tilted, for comparison with obser- 
vations. The notation used is in figure 14. 

Neglecting the effect of other vorticity present in the wake, the starting vortex 
will travel down under its self-induced velocity, which is approximately that of a 
single element of the chain, U,, which is given by (17) with R = R'b and R, = Ri R'b. 
Therefore, if 2 = 4, 

tan y = U,rT/2bR' (81) 

7T f 8 
T, R14 ( ) = an--- log --* . 

For the birds we have r z $ and T, = T, while for the insects and hummingbirds 
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0 0.1 

f f 
FIGURE 15. Stroke-plane angle y as a function off  for insects and birds, with core radius 
R; = 0.171. Vertical bars indicate tolerance to variations in &!;, This figure also indicates ob- 
servations: (a )  Antazilia (Weis-Fogh 1972) ; ( b )  Drosophila (Weis-Fogh 1972) ; (c) F&xdula 
hypoleuca (Norberg 1975). 

we have T = Q and T, = BT. Of course, this calculation involves a good deal of 
approximation, and it is difficult to be certain of its accuracy. In  particular, Us 
is likely to  be about 25% too low as the effect of the rest of the wake is not 
included. 

Calculated values of y for birds and insects are shown in figure 15, together with 
some observations. The effect of varying R' is important while that of varying Rh is 
small, and negligible for the insects. The observations seem to suggest a much larger 
value of R' than is consistent with energy saving, for an R' as small as 0.6 would imply 
a significant increase in power consumption and it is unlikely that wing aerodynamics 
would dictate such an inefficient circulation distribution. The error more probably 
lies in the underestimate of Us in the calculation above. Nevertheless, predicted 
stroke-plane angles agree with what we might expect; this calculation moreover 
ignores any physiological constraints. It is valid both for the downstroke of a hovering 
bird or for either branch of the figure of eight of a hovering insect. 

9. Conclusions 
(i) A hovering animal's wing-beat generates a vortex ring which may perhaps be 

modelled efficiently as a circular ring. 
(ii) A good model of the hovering wake is then a chain of stacked vortex rings for 

both birds and insects. 
(iii) The structure of the wake is developed as it starts from rest. Despite some 

breakup and limited instability the solution indicates clearly the nature of a consistent 
wake configuration. 

(iv) The entire wake system is described by three parameters: the feathering 
parameter f, whose range is 0.005 < f < 0.015 for insects and 0.05 < f < 0.15 for 
birds; the initial ring radius R'; the initial ring core radius &. 

R' and RA (of which the latter generally has only a minor influence) are determined 
by the initial energy and impulse of a vortex ring. A useful parameter is the modified 
feathering parameter f' = f /RI4. 
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(v) For smallf’ and large times the wake becomes close to the momentum jet. 
(vi) The contraction coefficient increases with f ’  because of recirculation in the 

contraction region and the lack of strict conservation of mass and momentum within 
the wake region. For large values off’ the wake expands. 

(vii) The spacing between adjacent rings measured in the contraction region is 
very close to that for a consistent family of identical parallel rings. 

(viii) Periodic breakup of the wake is observed for smaller values off ’, though the 
instability is limited to the far field and is not destructive. This may be an alternative 
explanation for the low frequency oscillations of insects in a vertical plane when 
hovering, which are usually ascribed to position finding. 

(ix) The power required to hover has been calculated. The vaIues obtained may be 
related by a conversion factor of simple form to the momentum jet power. For the 
insects this factor depends solely on R’, for the birds on both f and R’. 

(x) The values found for the initial vortex-ring radius R‘ are all less than I, and 
depend on the wing circulation. An appropriate circulation distribution for both 
normal and avian hovering is proportional to radius times wing chord. For a bird 
this would give R’ w 0.75 (or perhaps less), for an insect with semi-elliptic wing 
R’ z 0.85. 

(xi) The momentum jet generated by an actuator disk of area RJ2 times the 
wing-disk area is a good description of the wake of a hovering insect. It estimates 
the induced power accurately, but does not predict the presence of a large ring at  
the open lower end of the vortex wake. For the birds the feathering parameter is 
much larger, and the momentum jet cannot be an adequate description of the 
wake. 

(xii) Tip losses in hovering flight, calculated as the difference between the induced 
power and modified momentum-jet-induced power, can be as high as 15-20% in 
avian hovering, but are negligible in normal hovering. 

(xiii) The experimental observations by Magnan et al. and by Ellington show vortex 
rings similar to those used in this model. Further observations of this kind will provide 
much useful information on the nature of the flow field and will assist the verification 
of the hypotheses put forward in this paper. Calculations of the expected stroke- 
plane angle are in general agreement with observations. 
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